
What is the denominator of 491 as a repeating decimal? First, note that a fraction in its lowest form with the denominator of 491 will always have a repeating decimal if you divide the fraction (numerator divided by denominator).
Here we will count and show you the repeating digits when the numerator is 1 and denominator is 491. In other words, we will show you the recurring digits you get when you calculate 1 divided by 491.
Below is the answer to 1 divided by 491 with the repeating decimals. We colored each interval of repeating decimals in different colors so it is easy for you to see. The repeating decimals (recurring digits) go on forever.
0.002036659877800407331975560081466395112016293279022403258655804480651731160896130346232179226069246435845213849287169042769857433808553971486761710794297352342158859470468431771894093686354378818737270875763747454175152749490835030549898167006109979633401221995926680244399185336048879837067209775967413441955193482688391038696537678207739307535641547861507128309572301425661914460285132382892057026476578411405295315682281059063136456211812627291242362525458248472505091649694501018329938900203665987780040733197556008146639511201629327902240325865580448065173116089613034623217922606924643584521384928716904276985743380855397148676171079429735234215885947046843177189409368635437881873727087576374745417515274949083503054989816700610997963340122199592668024439918533604887983706720977596741344195519348268839103869653767820773930753564154786150712830957230142566191446028513238289205702647657841140529531568228105906313645621181262729124236252545824847250509164969450101832993890020366598778004073319755600814663951120162932790224032586558044806517311608961303462321792260692464358452138492871690427698574338085539714867617107942973523421588594704684317718940936863543788187372708757637474541751527494908350305498981670061099796334012219959266802443991853360488798370672097759674134419551934826883910386965376782077393075356415478615071283095723014256619144602851323828920570264765784114052953156822810590631364562118126272912423625254582484725050916496945010183299389...
As you can see, the repeating digits are 0020366598778004073319755600814663951120162932790224032586558044806517311608961303462321792260692464358452138492871690427698574338085539714867617107942973523421588594704684317718940936863543788187372708757637474541751527494908350305498981670061099796334012219959266802443991853360488798370672097759674134419551934826883910386965376782077393075356415478615071283095723014256619144602851323828920570264765784114052953156822810590631364562118126272912423625254582484725050916496945010183299389 which will repeat indefinitely. When we counted the repeating decimals, we found that there are 490 repeating decimals in 1/491 as a decimal.
Repeating Decimal Calculator
Want the repeating decimal for another fraction with a numerator of one? If so, please enter the denominator below.
Denominator of 492 as a repeating decimal
Here is the next denominator on our list that we have similar repeating decimal information about.
Note that the answer above only applies to 1/491. You will get a different answer if the numerator is different. Furthermore, 491 as a denominator in a fraction is only repeating for sure if the fraction is in its lowest form possible.
Bonus: To communicate what numbers are repeating in a repeating decimal, you put a line (vinculum) over the repeating digits like this:
0.0020366598778004073319755600814663951120162932790224032586558044806517311608961303462321792260692464358452138492871690427698574338085539714867617107942973523421588594704684317718940936863543788187372708757637474541751527494908350305498981670061099796334012219959266802443991853360488798370672097759674134419551934826883910386965376782077393075356415478615071283095723014256619144602851323828920570264765784114052953156822810590631364562118126272912423625254582484725050916496945010183299389
Copyright | Privacy Policy | Disclaimer | Contact
