Denominator of 59 as a repeating decimal




What is the denominator of 59 as a repeating decimal? First, note that a fraction in its lowest form with the denominator of 59 will always have a repeating decimal if you divide the fraction (numerator divided by denominator).

Here we will count and show you the repeating digits when the numerator is 1 and denominator is 59. In other words, we will show you the recurring digits you get when you calculate 1 divided by 59.


Below is the answer to 1 divided by 59 with the repeating decimals. We colored each interval of repeating decimals in different colors so it is easy for you to see. The repeating decimals (recurring digits) go on forever.

0.016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661...

As you can see, the repeating digits are 0169491525423728813559322033898305084745762711864406779661 which will repeat indefinitely. When we counted the repeating decimals, we found that there are 58 repeating decimals in 1/59 as a decimal.

Repeating Decimal Calculator
Want the repeating decimal for another fraction with a numerator of one? If so, please enter the denominator below.




Denominator of 60 as a repeating decimal
Here is the next denominator on our list that we have similar repeating decimal information about.


Note that the answer above only applies to 1/59. You will get a different answer if the numerator is different. Furthermore, 59 as a denominator in a fraction is only repeating for sure if the fraction is in its lowest form possible.

Bonus: To communicate what numbers are repeating in a repeating decimal, you put a line (vinculum) over the repeating digits like this:

0.0169491525423728813559322033898305084745762711864406779661


Copyright  |   Privacy Policy  |   Disclaimer  |   Contact